Activation of human dendritic cells is modulated by components of the outer membranes of Neisseria meningitidis.
نویسندگان
چکیده
Neisseria meningitidis serogroup B is a major cause of life-threatening meningitis and septicemia worldwide, and no effective vaccine is available. Initiation of innate and acquired immune responses to N. meningitidis is likely to be dependent on cellular responses of dendritic cells (DC) to antigens present in the outer membrane (OM) of the meningococcus. In this study, the responses of human monocyte-derived DC (mo-DC) to OM isolated from parent (lipopolysaccharide [LPS]-replete) meningococci and from a mutant deficient in LPS were investigated. Parent OM selectively up-regulated Toll-like receptor 4 (TLR4) mRNA expression and induced mo-DC maturation, as reflected by increased production of chemokines, proinflammatory cytokines, and CD83, CD80, CD86, CD40, and major histocompatibility complex (MHC) class II molecules. In contrast, LPS-deficient OM selectively up-regulated TLR2 mRNA expression and induced moderate increases in both cytokine production and expression of CD86 and MHC class II molecules. Preexposure to OM, with or without LPS, augmented the allostimulatory properties of mo-DC, which induced proliferation of naive CD4+ CD45RA+ T cells. In addition, LPS-replete OM induced a greater gamma interferon/interleukin-13 ratio in naive T cells, whereas LPS-deficient OM induced the reverse profile. These data demonstrate that components of the OM, other than LPS, are also likely to be involved in determining the levels of DC activation and the nature of the T-helper immune response.
منابع مشابه
In Silico Studies of Outer Membrane of Neisseria Meningitidis PorA: Its Expression and Immunogenic Properties
Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from ser...
متن کاملConstruction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate
Objective(s): The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model.Materials and Methods: Af...
متن کاملCloning and expression of porA gene as the first step of a vaccine candidate study against Neisseria meningitidis serogroup A infection
Introduction: Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in human. PorA is a major component of the outer membrane of N. meningitidis and functions as a cationic Porin. This study aimed to clone and determine the expression of PorA as the first step for producing a proper antigen in a vaccine study against N. meningitidis. Methods: An approximately ...
متن کاملTruncated Core/NS3 Fusion Protein of HCV Adjuvanted with Outer Membrane Vesicles of Neisseria meningitidis Serogroup B: Potent Inducer of the Murine Immune System
Background: A licensed vaccine against hepatitis C virus (HCV) has not become available to date. The stability and antigenicity of a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV had been predicted. Although safe antigens, recombinant proteins are not efficacious vaccines without adjuvants. The present study evaluated the immunogenicity of ...
متن کاملVery small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation.
Recent findings about pathogens and innate immune system interactions have opened new opportunities for adjuvants designs. We have elaborated a new approach, in which gangliosides are incorporated into the outer membrane complex of Neisseria meningitidis (Nm) to form very small size proteoliposomes (VSSP). VSSP, used as monotherapy, demonstrated a unique ability to render immunogenic highly tol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 71 10 شماره
صفحات -
تاریخ انتشار 2003